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CERTIFICATE 

 

Inactivation of bacteria, viruses and other pathogens 
by UV-C irradiation 

in the Leica cryostat product family 
 
 
1. Summary 
 
UV-C radiation is effective in disinfecting surfaces and air within the irradiated 
working space of the cryostats Leica CM1850UV, CM1900UV and CM1950 at -20 °C 
(Table 1). 
 
For high-level disinfection, irradiation for three hours (CM1850UV/CM1950) and four 
hours (CM1900UV) is recommended. Vegetative bacteria including Mycobacterium 
tuberculosis, bacterial endospores (Bacillus sp.) and fungi are inactivated within this 
period of time. Viruses are also inactivated by at least 4 log10 units (99,99 %), including 
resistant species like hepatitis viruses. 
 
Intermediate level disinfection can be achieved by short-term irradiation of 30 minutes 
(CM1850UV/CM1950) and 40 min (CM1900UV). This reduces vegetative bacteria 
including Mycobacterium tuberculosis and sensitive viruses like Influenza A virus 
(including highly pathogenic avian influenza A type H5N1 and novel H1N1 viruses) and 
Poliovirus by at least 5 log10 units (99,999%). 
 
UV-C irradiation within the working space of the cryostats can provide safe and 
effective surface and air disinfection and significantly reduces infection risk. 
 
It is recommended to wipe off visible contamination in the cryostat with an alcoholic 
based disinfectant before using the UV lamp. The germicidal effect of radiation is 
restricted to directly illuminated areas and pathogens not shielded by other material. 
Therefore, UV-C irradiation cannot replace regular chemical disinfection of the 
cryostat chamber. 
 
 
 
 
9 July 2009     Ingo Maier, PhD, PD 
 
 
ecoscope does not accept any responsibility for misleading citations due to incomplete 
reproduction of this certificate. 
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Table 1: Predicted UV-C disinfection efficacy1 for selected pathogens in the cryostats 

Leica CM1850UV/CM1950 and CM1900UV2 

 
 

Species Irradiation time
2
 

 30 min / 40 min 3 h / 4 h 

   

Bacteria
3   

Bacillus ssp.(vegetative) + + 

Bacillus sp. (spores)  + 

Burkholderia pseudomallei + + 
Enterobacter faecium + + 

Escherichia coli + + 
Klebsiella pneumoniae + + 

Mycobacterium tuberculosis + + 
Proteus mirabilis + + 

Pseudomonas aeruginosa + + 

Salmonella ssp. + + 
Staphylococcus aureus + + 
Vibrio cholerae + + 

Yersinia pestis + + 
   

Yeasts
3
 and molds

3
   

Aspergillus fumigatus (spores)  + 
Candida albicans + + 

Cryptococcus neoformans  + 
   

Viruses
4
   

Adenoviruses  + 
Hepatitis A virus + + 

Hepatitis B virus  + 
Herpes viruses + + 
Influenza viruses + + 

Poliovirus + + 
SARS coronavirus  + 
Simian virus 40  + 

Vaccinia virus + + 
 
 +: disinfection achieved 
 
 1: valid only for conditions equivalent to those in the tests 
 2: 40 min/4h irradiation periods apply to the cryostat CM1900UV-series 
 3: reduction by 5 log10 units (bacteria, fungi incl. yeasts) 
 4: reduction by 4 log10 units (viruses) 
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2. Experiments 
 
Leica Biosystems Nussloch GmbH (formerly Leica Microsystems Nussloch GmbH) 
contracted ecoscope (Amtzell, Germany) in 2004 to evaluate the surface disinfection efficacy 
of ultraviolet irradiation in the Leica cryostat CM1850. The apparatus was equipped with a 
low-pressure mercury arc lamp (sterilAir GmbH, Kürten, Germany). 
 
The evaluation consisted of determining the inactivation by UV-C light (254 nm) irradiation of 
test bacteria and viruses on stainless steel surfaces in the cryostat chamber at -20 °C. 
 
In a first project, the bacterium Staphylococcus aureus ATCC 6538 was used as a 
biodosimetry strain. Bacteria were dried onto stainless steel plates from suspensions in 
distilled water. The germ carriers were placed into different, defined positions within the 
cryostat chamber. It was demonstrated that under the specified test conditions, UV irradiation 
was capable of inactivating S. aureus by >5 log10 units after 15 - 30 min irradiation, 
depending on the position in the cryostat (14). 
 
In two independent experimental series, the inactivation of the test virus Simian virus 40 (SV 
40, a Polyomavirus) exposed to UV-C for different periods of time was investigated. Viruses 
suspended in cell culture medium containing 2 % bovine fetal serum were dried onto 
stainless steel plates. The virus carriers were placed in a fixed position in the cryostat 
chamber. After irradiation, the viruses were rinsed off and in blind tests applied to monkey 
kidney cell cultures (CV-1) for virus propagation. After 12-14 and 15-18 days incubation, the 
cell cultures were examined for virus-specific cytopathic effects and the infectivity titers were 
determined. The results were presented in a separate test report (15). It was shown that the 
inactivation of SV 40 by >4 log10 units was achieved by UV irradiation for 95 -180 minutes. 
 
Leica Biosystems supplied comparative measurements of UV-C intensities at different 
positions in the working spaces of the cryostats CM1850UV, CM1950 and CM1900UV. 
 
On the basis of these experimental results and available scientific information the inactivating 
effect of UV-C irradiation in the cryostats on pathogenic microorganisms and viruses could 
be assessed (Table 1). A selection of literature data on UV-C (254 nm) radiation doses 
required for the inactivation of various microorganisms and viruses is summarized in the 
appendix. 
 
 
3. The mechanism of UV damage 
 
Low-pressure mercury arc lamp radiation is essentially monochromatic with a peak output at 
253.7 nm, close to the absorption maximum of nucleic acids (DNA, RNA), the carrier of 
genetic information. Absorption of UV photon energy damages the genetic material of 
microorganisms by formation of lesions, in particular through dimerization of adjacent 
pyrimidines in nucleic acids. Accumulated lesions may overwhelm the cellular capacity for 
repair, induce mutations, inhibit replication and thus finally kill the organism (16, 21). 
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4. Influence of nucleic acid conformation on UV resistance 
 
Nucleic acids in viral genomes may have different conformations: single-stranded DNA resp. 
-RNA (ssDNA resp. ssRNA) or double-stranded DNA resp. -RNA (dsDNA resp. dsRNA). In 
inactivation experiments on ssRNA and dsRNA obtained from the same virus it was shown 
that ssRNA is more sensitive against UV-C radiation than dsRNA (5, 39, 49). The same is 
true for ssDNA and dsDNA (1, 24, 39, 40, 48). DNA viruses are more sensitive than RNA 
viruses. These results are supported by available data on UV inactivation: ssRNA viruses like 
Caliciviridae, Orthomyxoviridae, Picornaviridae and Togaviridae are entirely highly sensitive, 
whereas dsRNA- and dsDNA viruses of comparable genome size (Adenoviridae, Reoviridae, 
Polyomaviridae) are clearly more resistant to UV-C (Table 2). The differences in sensitivity 
most probably reflect different capacities for host cell repair. 
 
 
5. Kinetics of UV-C inactivation in microorganisms 
 
Germicidal UV irradiation inactivates pathogens according to the standard decay equation 
S = exp (-k*I*t) (first order kinetics). S represents the fraction of the original population that 
survives exposure at time t, and I the light intensity. Mathematical modeling of UV decay 
curves has been reviewed by (23) and (26). 
 
The rate constant k and lethal ultraviolet dosages (I*t) have been determined experimentally 
for a large number of bacteria, fungi, viruses and protozoa in numerous studies. UV-C doses 
required for the inactivation of a selection of microorganisms, especially viruses, are given in 
the appendix. Although the results vary depending on experimental design, UV measurement 
and state of the biological material, a conclusive picture of relative UV-C sensitivities has 
been obtained. By use of biodosimetry test strains, conclusions about UV-C dosages can be 
drawn and predictions made on their effect on other organisms (10, 27). 
 
 
6. Staphylococcus aureus as a test bacterium 
 
Staphylococcus aureus ATCC 6538 has been chosen as test strain, because it is one of the 
listed test strains in standardized disinfection testing and a potential pathogen in humans. In 
addition, data on the UV-C sensitivity of S. aureus are available from the scientific literature 
(Appendix). 
 
 
7. SV 40 as a surrogate virus in disinfection testing 
 
A surrogate virus employed in the testing of disinfection methods should respond to the 
disinfectant in question in a similar way as the pathogen against which it was designed. At 
best, the surrogate virus should be somewhat more resistant. Among the different virus 
groups, small dsDNA viruses show the highest resistance against UV-C. 
 
SV 40 was chosen as test virus because of several advantageous properties. It is a relatively 
small virus (ca. 50 nm) possessing a small genome of dsDNA (5.2 kbp) and a very high 
resistance to UV-C radiation (see Appendix). SV 40 propagates in mammalian cells 
(monkey, man). It is classified in risk class 2 and can thus be handled at reasonable 
expense. The virus and a suitable test system (monkey kidney cells) are available. 
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SV 40 is biochemically and genetically well characterized. Moreover, SV 40 is one of the test 
viruses in the standardized testing of chemical disinfectants against viruses (8, 30). Contrary 
to the European standard (6, 17), the German Federal Health Office (Robert Koch Institute) 
demands tests on SV 40 in addition to Poliovirus and Adenovirus because it proved to be 
more resistant in some investigations (33). 
 
SV 40 is among the viruses most resistant to UV-C, surpassing vegetative bacteria and 
bacterial spores (see appendix). Scientific data shows that ssRNA- and ssDNA viruses are 
inactivated faster, as well as large dsDNA viruses like herpes viruses and Vaccinia virus, for 
example. Among the small dsDNA viruses, adenoviruses are more sensitive to UV-C than 
polyomaviruses including SV 40. Hepatitis B virus is of similar size as SV 40 (Table 2) and 
therefore, a similar or higher sensitivity to UV-C is postulated. Presence or absence of an 
viral envelope is irrelevant in relation to UV-C sensitivity. In conclusion, SV 40 is regarded as 
a suitable surrogate for pathogenic viruses in UV-C inactivation studies. 
 
 
Table 2: Overview on important viruses infecting humans and predicted UV-C 
sensitivity 
 

Virus family 
Genome 

type 
Enve- 
lope 

Genome 
size 

(kb/kbp) 

D90 
(mWcm-2) 

Virus 

Adenoviridae dsDNA no 28-45 27-49 Human adenovirus A to F 
Arenaviridae ssRNA yes 10-11 3.5 Lassa virus 
Astroviridae ssRNA no 6.8 10-12 Astrovirus 

Bunyaviridae ssRNA yes 11-12 2.0-3.5 
California encephalitis 
virus 
Hantaan virus 

Caliciviridae ssRNA no 7.5 9.7-11 Norwalk virus (NoV) 
     Hepatitis E virus 
Coronaviridae ssRNA yes 30 0.7-1.1 SARS coronavirus 

Deltaviridae ssRNA yes 1.7 22 
Hepatitis D virus (assoc. 
to HBV) 

Filoviridae ssRNA yes 19.1 2.0 
viruses causing 
haemorrhagic fevers: 
Marburg-, Ebola virus 

Flaviviridae ssRNA yes 10-12 6.8-8.4 Hepatitis C virus 
     Yellow fever virus 

     
Tick-borne encephalitis 
virus 

Hepadnaviridae dsDNA yes 3.2 3.8-4.1 Hepatitis B virus (HBV) 
Herpesviridae dsDNA yes 125-235 3.5-7.0 Herpes simplex virus 1, 2 
     Varicella zoster virus 
     Cytomegalovirus 
     Epstein Barr virus 
     Human herpes virus 6, 7 
     Human herpes virus 8 
Orthomyxoviridae ssRNA yes 13.6 2.0-3.0 Influenza viruses A-C 
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Papovaviridae dsDNA no 5-8 68-103 Polyomavirus 
     Papillomavirus (warts) 
Paramyxoviridae ssRNA yes 15-16 3.0 Measles virus 
     Mumps virus 
     Parainfluenza virus 

     
Human respiratory 
syncytial virus 

Parvoviridae ssDNA no 5.5 2.1-3.2 Parvovirus B19 
Picornaviridae ssRNA no 7-8 12-14 Hepatitis A virus (HAV) 
     Poliovirus 
     Coxsackievirus 
     Echovirus 
     Rhinovirus 

Poxviridae dsDNA yes 130-375 1.8-4.3 
Smallpox virus, 
molluscum contagiosum 

Reoviridae dsRNA no 16-27 19-32 
Reovirus 
Human rotavirus A, B 

Retroviridae ssRNA yes 7-11 18-30 
Human 
immunodeficiency virus 
(HIV) types 1 and 2 

     
Human T-lymphotropic 
viruses (HTLV-1, -2) 

Rhabdoviridae ssRNA yes 12 0.9-1.2 Rabies virus 
Togaviridae ssRNA yes 10-12 4.9-6.5 Rubella virus 
 
Morphological characters apply to the respective virus family. 
 
Abbreviations 
 
D90: UV-C dose required for 90% inactivation (1 log10 unit reduction) 
dsDNA: double-stranded desoxyribonucleic acid 
dsRNA: double-stranded ribonucleic acid 
kb/kbp: x 1000 (kilo) bases resp. basepairs 
nm: nanometer = 10-9 m 
ssDNA: single-stranded desoxyribonucleic acid 
ssRNA: single-stranded ribonucleic acid 
 
 
The list of viruses was compiled according to a corresponding list published by the Robert 
Koch Institute in cooperation with the German Association for the Control of Virus Diseases 
and the German Society for Hygiene and Microbiology (33), according to the U.S. 
Departments of Health and Human Services/Centers for Disease Control and Prevention 
(www.cdc.gov/ncidod/dvrd/index.htm), the ICTVdB Index of Viruses 
(www.ncbi.nlm.nih.gov/ICTVdb/Ictv/ICD-10.htm) and the ICTVdB Universal Virus Database 
(www.ncbi.nlm.nih.gov/ICTVdb/index.htm). The predicted values for UV-C sensitivity were 
adopted from (27). 
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8. Disinfection: definitions 
 
The guidelines of the German Society for Hygiene and Microbiology (12) for the evaluation of 
chemical surface disinfectants provide that bacteria and fungi are usually inactivated by a 
factor of at least 5 log10 units. This corresponds to the European standard EN 1040 on the 
testing of chemical disinfectants in suspension tests (13). 
 
For the certification of virus disinfection, the guidelines of the German Association for the 
Control of Virus Diseases (Deutsche Vereinigung zur Bekämpfung der Viruskrankheiten e.V. 
(30)) for chemical surface disinfection require a reduction in infectivity by minimum 4 log10 
units. 
 
In addition, the following classification scheme of disinfection levels is used: 
 
1. Low-level disinfection can kill most bacteria, some viruses, and some fungi, but it cannot 
be relied on to kill resistant microorganisms such as Mycobacterium tuberculosis or bacterial 
spores. 
 
2. Intermediate-level disinfection inactivates Mycobacterium tuberculosis, vegetative 
bacteria, most viruses, and most fungi, but it does not necessarily kill bacterial spores. 
 
3. High-level disinfection: Destruction of all microorganisms, with the exception of high 
numbers of bacterial spores. 
 
4. Sterilization: Complete elimination of microorganisms and viruses. 
 
These definitions are used by the U. S. Department of Health and Human Services and the 
Association for Professionals in Infection Control and Epidemiology (35), the WHO (42) and 
others. 
 
The standards refer to the effectiveness of chemical disinfectants. In analogy, they are 
applied to surface disinfection by UV-C irradiation in the following. 
 
 
9. Destruction of bacteria and fungi by UV-C irradiation 
 
Inactivation experiments with Staphylococcus aureus ATCC 6538 showed that the number of 
viable bacteria was reduced by more than 5 log10 units after irradiation for 30 minutes in the 
cryostat CM1850UV. The disinfection efficacy corresponded to the guideline of the German 
Society for Hygiene and Microbiology (12) for surface disinfection methods and to an 
intermediate-level disinfection as defined above. 
 
Disinfection of vegetative bacteria (≥5 log10 units reduction) including Staphylococcus aureus 
is achieved by UV-C dosages of ≤80 mWs cm-2 (Appendix). No literature data are available 
for S. aureus ATCC 6538. However, it is not to be expected that the test strain differs 
significantly in sensitivity from other S. aureus strains. This applies also to Mycobacterium 
tuberculosis and other vegetative bacteria that have potential to pose a severe threat to 
public health and safety (biothreat agents, (10, 34)). The similarity in the UV response allows 
the prediction that 30 minutes or 40 minutes UV irradiation achieves disinfection of all 
vegetative bacteria listed in table 1. 
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Spore-forming bacteria like Bacillus subtilis and B. anthracis, however, are 5 - 10 times more 
resistant to UV-C than their corresponding vegetative cells. 
 
While the UV-C sensitivity of the yeast Candida albicans compares to that of vegetative 
bacteria, Aspergillus spores and the melanized form of Cryptococcus neoformans are highly 
resistant to UV irradiation (Appendix). 
 
 
10. Inactivation of viruses by UV-C irradiation 
 
Within the given experimental conditions, an inactivation of the test virus SV 40 by minimum 
4 log10 units was achieved by UV irradiation for 95 minutes and longer in the cryostat 
CM1850UV. This inactivation level corresponds to the accepted guideline of the German 
Association for the Control of Virus Diseases (Deutsche Vereinigung zur Bekämpfung der 
Viruskrankheiten e.V. (30)). 
 
An account of the, compared to other pathogens, high resistance of the test virus SV 40 to 
UV-C (appendix), it can be assumed according to the scientific state of knowledge that other 
resistant viruses including Hepatitis B virus and fungal spores are inactivated to the same 
extent within the same irradiation time and also that vegetative bacteria including 
Mycobacterium tuberculosis, bacterial spores, fungi, and most viruses are destroyed with 
higher efficiency, as long as they are directly subjected to irradiation on surfaces or in the air 
(Table 1). The inactivation effect can be classified as high-level disinfection as defined 
above. 
 
The test results showed that the effect of irradiation was considerably affected by 
components of the cell culture medium and the addition of 2 % bovine fetal serum: Irradiation 
periods longer than 95 minutes did not result in significantly increased inactivation. This has 
to be seen as an approximation to practical situations. It is recommended to remove visible 
contamination in the cryostat by wiping with disinfectant before using the UV lamp. For this 
purpose, an alcoholic based disinfectant recommended by the cryostat manufacturer should 
be used. 
 
Dependent on the position in the cryostat, the radiation dose received by a surface area can 
be less than that in the test position used with SV 40. For disinfecting these areas the 
irradiation time has to be increased proportionally. In consideration of results from the study 
on S. aureus (14) and with inclusion of an additional safety margin, a factor of 1.5 + 0.4 = 1.9 
is proposed for prolongation of the irradiation period. Therefore, irradiation for 3 hours is 
recommended for high-level disinfection in directly irradiated areas of the cryostat chamber 
of the CM1850UV. Comparative measurements showed that the incident UV-C radiation on 
surfaces of the cryostat chamber of the CM1950 reaches the same intensity as that in the 
CM1850UV. Accordingly, irradiation for 30 min is also recommended for an intermediate 
level of disinfection in the CM1950 UV, and 3 hours for high-level disinfection. The UV-C 
radiation intensity on surfaces of the cryostat chamber of the CM1900UV is by 25 % lower 
than in the CM1850UV. Therefore, 40 min resp. 4 hours irradiation are recommended for an 
intermediate resp. high-level disinfection in the CM1900 UV (Table 1). 
 
The test results and assessment of disinfection efficacy refer to the full radiation output of a 
lamp such as employed in the test. 
 
Disinfection at the predicted level is restricted to directly illuminated air and surface areas. 
Organic material may shield pathogens from UV-C radiation. 
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11. Influenza viruses 
 
General characteristics 
 
Influenza A viruses represent a continuous pandemic threat and are of current international 
concern. Influenza ("flu") viruses are classified into types A, B or C. All three types can infect 
humans. Influenza A viruses can infect people, birds, pigs, horses, and other animals, but 
wild birds are the natural hosts for these viruses. Influenza type A viruses are divided into 
subtypes based on two proteins on the surface of the virus called hemagglutinin (H) and 
neuraminidase (N). There are 14 hemagglutinin subtypes and 9 neuraminidase subtypes of 
influenza A viruses, and potentially all H/N-combinations are possible. 
 
Influenza viruses are members of the family Orthomyxoviridae. Their genome consists of 
eight segments of linear, single-stranded RNA with a total length of 13,600 nucleotides. 
Influenza viruses are enveloped viruses. In spherical forms, the virion diameter is 80-120 nm 
(Table 2). 
 
Influenza viruses are readily transmitted by aerosols or by direct contact. Viable virus 
particles can survive at least 48-72 h on contaminated surfaces (3, 4). 
 
 
Novel influenza H1N1 
 
In spring 2009, human infections caused by a new type of influenza A/H1N1 virus were 
identified in Mexico and the United States. After its discovery, the virus spread rapidly 
throughout the world. Three months later, about 95,000 confirmed cases and 429 deaths 
were reported. On 11 June 2009, the World Health Organization (WHO) raised the worldwide 
pandemic alert level to Phase 6 which reflects the fact that there are now ongoing community 
level outbreaks in multiple parts of world (9, 46, 47). 
 
The virus originates from a swine influenza A (H1) that has been circulating in American pigs 
years before recognition in humans. The virus contains genes originating from American and 
European pig influenza and from bird and human viruses (this is called a "reassortant virus") 
and is readily transmitted between humans. Because the new influenza A/H1N1 has never 
before circulated among humans and most people have no or little immunity, it could cause 
more infections than seasonal flu. There are concerns that the virus may reassort with 
seasonal human influenza giving rise to even more transmissible or more pathogenic viruses 
(2, 18, 22, 28, 29, 37, 38). 
 
 
Highly pathogenic avian influenza H5N1 ("bird flu") 
 
Avian influenza ("bird flu") is an infectious disease of poultry caused by influenza type 
A/H5N1 viruses. An unprecedented epidemic of highly pathogenic avian flu (HPAI) spreads 
across large populations of domestic birds and migratory water fowl in Asia since 2003 and 
has reached Europe in late 2005, Africa in early 2006 (19, 42, 43, 45). 
 
Influenza viruses that infect birds are called “avian influenza viruses”. Only influenza type A 
viruses infect birds. To date, all outbreaks of HPAI have been caused by influenza A viruses 
of subtypes H5 or H7. HPAI is usually associated with high mortality in poultry. 
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Avian influenza viruses do not normally infect humans. However, about 260 people have 
already died from the current epidemic (44). This raises serious concerns that the highly 
pathogenic avian flu virus evolves human-to-human transmission through the acquisition of 
genetic material from the H1N1 or H3N2 subtypes circulating in human populations. This 
could result in a influenza pandemic with massive fatalities worldwide (11, 20, 22, 25, 41, 
50). 
 
 
UV-C inactivation of influenza virus 
 
Viruses like influenza virus with genomes comprised of single-stranded RNA are particularly 
sensitive to UV-C radiation. This is supported by available data on UV inactivation (Table 2, 
Appendix). Accordingly, the decimal UV-C (254 nm) inactivation dose for influenza virus 
strains has been predicted as low as 2.0 - 3.0 mWs cm-2 (7, 27, 36). It is thus in the same 
range as that for vegetative bacteria like Escherichia coli and Staphylococcus aureus. The 
susceptibility of influenza virus to UV-C disinfection has also been noted in (31, 32). 
 
The morphology, general structure and genome organization is practically the same in all 
influenza viruses. Data on UV-C sensitivity of tested human influenza virus strains are thus 
equally applicable to other human and animal influenza subtypes. 
 
It is concluded that a 30 min period of germicidal UV-C irradiation in the cryostats CM1850 
UV/CM1950 and a 40 min period in the CM1900UV results in an inactivation of Influenza A 
virus by at least 5 log10 units. This corresponds to high-level disinfection. 
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APPENDIX 
 
 
UVC (254 nm) radiation dose required for the inactivation of selected microorganisms 
and viruses (at room temperature, mWs cm-2) 
 

 
Inactivation - log10 units / 

% Inactivation 
 

1 2 3 4 5 

 
Species 
 

90 99 99.9 99.99 99.999 

 
References 
 

       
VEGETATIVE BACTERIA       
       

Bacillus anthracis 1.2-28 8.7-42 8.7-56 2.6-70 15-84 
(3), (44), 
(47), (67), 
(20) 

Bacillus subtilis 3.7-12 6-18 9-14 11-15 13-18 

(3), (44), 
(47), (63), 
(82), (103), 
(16) 

Brucella melitensis 2.8-3.7 5.3-5.8 7.8   (75) 
Brucella suis 1.7-2.7 3.6-5.3 5.6-7.9 7.5-10.5  (75) 
Burkholderia mallei 1.0-1.2 2.4-2.7 3.8-4.1 5.2-5.5  (75) 
Burkholderia pseudomallei 1.4-4.4 2.8-3.5 4.3-5.5 5.7-13  (75), (20) 

Escherichia coli 1.3-5.1 2.8-10 4.1-16 5.0-28 7.7-36 

(3), (4), (6), 
(8), (14), 
(17), (27), 
(36), (37), 
(41), (44), 
(47), (49), 
(60), (70), 
(83), (85), 
(92), (90), 
(91), (94), 
(95), (96), 
(104), (107), 
(84), (16) 

Francisella tularensis 1.3-1.4 3.1-3.8 4.8-6.3 6.6-8.7  (75) 

Klebsiella pneumoniae   15 11-31 29-39 
(60), (96), 
(107) 

Mycobacterium tuberculosis 0.5-2.3 1.0-6.0 1.5-10 2.0-13 2.4-17 
(3), (25), 
(46), (47), 
(51) 

Mycobacterium avium 5.7-6.4 7.9-9.4 10-12 12-24  (84), (38) 
Mycobacterium intracellulare 7.4-7.8 11 13-15 16-19  (38) 
Mycobacterium terrae  10.5    (50) 
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Proteus mirabilis 0.9 1.8 2.7 3.6 4.5 (41) 

Pseudomonas aeruginosa 1.0-5.5 1.9-11 2.9 -17 3.9-22 4.8-28 
(3), (44), 
(47), (51), 
(96) 

       

Salmonella sp. 1.8-5.1 3.2-7.0 5.4-9.0 7.1-25 8.3-15 

(3), (17), 
(44), (47), 
(49), (60), 
(95), (96), 
(104), (20) 

Shigella sonnei 4   7.5  (20) 

Staphylococcus aureus 1.9 -5.5 3.9-11 5.8-17 7.8-22 9.7-28 
(3), (17), 
(18), (44), 
(47) 

Vibrio cholerae 0.8-1.1 1.4-6.5 2.2-12 2.5-21 19 

(3), (44), 
(47), (78), 
(95), (96), 
(20) 

Yersinia enterocolitica 1.3   3.6-11  (20) 
Yersinia pestis 1.3-1.4 2.2-2.6 3.2-3.7 4.1-4.9  (75) 

 

 

BACTERIAL SPORES       
       
Bacillus anthracis 74 149 223 297 371 (51) 

Bacillus anthracis 25-28 ~40 56 62-70 84 
(67), (75), 
(20) 

Bacillus pumilus   20   (66) 

Bacillus subtilis 9-39 17-38 22-58 29-80 36-121 

(3), (17), 
(27), (44), 
(56), (32), 
(64), (67), 
(71), (73), 
(74), (82), 
(92), (89), 
(90), (103), 
(45), (20) 

 

 

YEASTS       
       
Candida albicans 7.6-12 11-17 15-22 18-27 22-32 (72) 
Cryptococcus neoformans, 
melanized 

34 68 102 136 170 (100) 

Cryptococcus neoformans, 
non-pigmented 

16 32 48 64 80 (100) 
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FUNGAL SPORES       
       

Aspergillus sp. 35-67 134 99-330 117-440 147-550 
(35), (44), 
(47), (51) 

Aspergillus fumigatus 54 108 162 216 270 (35) 
Epidermophyton floccosum   120   (23) 
Microsporum canis     120 (23) 
Trichophyton mentagrophytes   120   (23) 
Trichophyton rubrum    120  (23) 
 

 

VIRUSES       
       
Adenoviridae 27-49*     (58) 
Adenovirus 1 35 69 103 138  (69) 

Adenovirus 2 40-61 78-109 119-163 
160, 
167 

198 
(27), (26), 
(33), (51), 
(86) 

Adenovirus 2  30 50 80  (31) 
Adenovirus 4 10 34 69 116  (34) 
Adenovirus 5    216-240 305 (46), (99) 
Adenovirus 6 39 77 115 154  (69) 
Adenovirus 40 30 61 93 124 155 (62) 
Adenovirus 41 24-75 53-111 82-175 112-222 141 (62), (50) 
       
Arenaviridae 3.5*     (58) 
Astroviridae 10-12*     (58) 
Bunyaviridae 2.0-3.5*     (58) 
       
Caliciviridae 9.7-11*     (58) 
Canine calicivirus   20   (28) 
Feline calicivirus 
 

4.8  12 19  (28), (94) 

Murine norovirus    25 30 (54) 
       
Coronaviridae 0.7-1.1*     (58) 
SARS coronavirus    91 114-162 (29), (48) 
Berne virus    5  (101) 
       
Deltaviridae 22*     (58) 
       
Filoviridae 2.0*     (58) 
       
Flaviviridae 6.8-8.4*     (58) 
       
Hepadnaviridae 3.8-4.1*     (58) 
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Herpesviridae 3.5-7.0*     (58) 
Epstein Barr virus 16 - 23     (39) 

Herpes simplex virus 1 3.7-10 7.4-20 11 24 37 
(39), (76), 
(102) 

Herpes simplex virus 2 0.4 0.7 11 13  (102) 
Equine herpes virus   7.5   (101) 
       
Orthomyxoviridae 2.0-3.0*     (58) 

Influenza A 1.8-2.5 1.3-8.2 2.0  3.3 
(1), (13), 
(42), (77) 

       
Papovaviridae 68-103*     (58) 

Polyomavirus 47 43-94 141   
(53), (97), 
(52) 

Simian virus 40 105-300 130-261  440 551 

(2), (10), 
(11), (12), 
(21), (30), 
(46), (79), 
(80), (93) 

Paramyxoviridae 3.0*     (58) 
       
Parvoviridae 2.1-3.2*     (58) 
Parvovirus H-1, hamster 
osteolytic virus 

23 46    (22) 

Porcine parvovirus     ca. 83 (19) 
Murine parvovirus     <20  
       
Picornaviridae 12-14*     (58) 

Coxsackievirus 6.9-15 14-23 20-43 30-58 41-72 
(5), (33), 
(51), (95) 

Echovirus 7.0-11 14-21 21-32 28-42 35-53 (33), (51) 

Encephalomyocarditis virus  7.6 15 23 16-113 25-141 
(15), (105), 
(9) 

Foot-and-mouth disease virus 24 48 72 96 120 (68) 

Hepatitis A virus 4.1-7.3 7.6-14 8.0-22 11-37 13-100 

(3), (5), (19), 
(44), (47), 
(95), (98), 
(99) 

Poliovirus 4.1-8 10-16 14-23 18-31 22-43 

(3), (7), (17), 
(33), (37), 
(40) 
recalculated 
by (17), (44), 
(53), (59), 
(62), (92), 
(94), (95), 
(96), (43) 

Rhinovirus     
"like 

polio" 
(42), (43) 
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Poxviridae 1.8-4.3*     (58) 

Vaccinia virus 1.5-3.5 3.0-7.1 4.5-11 6.1 7.6 
(51), (57), 
(76) 

       
Reoviridae 19-32*     (58) 

Reovirus 17-26 35-53 52-102 70-74 87-170 
(37), (51), 
(61), (99), 
(106) 

Rotavirus 7.1-11 15-46 23-69 31-92 40-115 

(3), (5), (17), 
(44), (47), 
(63), (87), 
(92), (95), 
(96) 

Simian Rotavirus 29 58 87 117  (55) 
       
Retroviridae 18-30*     (58) 
HTLV-III/LAV  200   360 (65), (81) 
Rous sarcoma virus      300 (48) 
       
Rhabdoviridae 0.9-1.2*     (58) 
Vesicular stomatitis virus    19 <75 (48), (24) 
Rabies virus    5  (101) 
       
Togaviridae 4.9-6.5*     (58) 
Sindbis virus   15-30 40 24-50 (99), (106) 
Semliki forest virus   7.5   (101) 
Venezuelan equine 
encephalomyelitis virus 

   22 33 (88) 

 
* predicted dose range for entire virus family according to ref. (58). 
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